Advanced Microprocessors and Peripherals
Architecture, Programming and Interfacing
Second Edition
Contents

Preface to the Second Edition
Preface to the First Edition
Acknowledgements

1. The Processors: 8086/8088—Architectures, Pin Diagrams and Timing Diagrams
 1.1 Register Organisation of 8086 2
 1.2 Architecture 3
 1.3 Signal Descriptions of 8086 8
 1.4 Physical Memory Organisation 14
 1.5 General Bus Operation 16
 1.6 I/O Addressing Capability 17
 1.7 Special Processor Activities 18
 1.8 Minimum Mode 8086 System and Timings 21
 1.9 Maximum Mode 8086 System and Timings 25
 1.10 The Processor 8088 28
 Summary 36
 Exercises 36

2. 8086/8088 Instruction Set and Assembler Directives
 2.1 Machine Language Instruction Formats 38
 2.2 Addressing Modes of 8086 41
 2.3 Instruction Set of 8086/8088 46
 2.4 Assembler Directives and Operators 74
 Summary 82
 Exercises 83

3. The Art of Assembly Language Programming with 8086/8088
 3.1 A Few Machine Level Programs 85
 3.2 Machine Coding the Programs 91
 3.3 Programming with an Assembler 95
 3.4 Assembly Language Example Programs 103
 Summary 129
 Exercises 129
4. Special Architectural Features and Related Programming

4.1 Introduction to Stack 131
4.2 Stack structure of 8086/88 133
4.3 Interrupts and Interrupt Service Routines 138
4.4 Interrupt Cycle of 8086/8088 138
4.5 Non Maskable Interrupt 141
4.6 Maskable Interrupt (INTR) 141
4.7 Interrupt Programming 142
4.8 Passing Parameters to Procedures 145
4.9 Handling Programs of Size More than 64K 148
4.10 MACROS 150
4.11 Timings and Delays 152
 Summary 155
 Exercises 155

5. Basic Peripherals and Their Interfacing with 8086/88

5.1 Semiconductor Memory Interfacing 158
5.2 Dynamic RAM Interfacing 167
5.3 Interfacing I/O Ports 173
5.4 PIO 8255 [Programmable Input-Output Port] 184
5.5 Modes of Operation of 8255 187
5.6 Interfacing Analog to Digital Data Converters 212
5.7 Interfacing Digital to Analog Converters 224
5.8 Stepper Motor Interfacing 228
5.9 Control of High Power Devices Using 8255 231
 Summary 232
 Exercises 233

6. Special Purpose Programmable Peripheral Devices and Their Interfacing

6.1 Programmable Interval Timer 8253 235
6.2 Programmable Interrupt Controller 8259A 249
6.3 The Keyboard/Display Controller 8279 266
6.4 Programmable Communication Interface 8251 USART 278
 Summary 290
 Exercises 290

7. DMA, Floppy Disk and CRT Controllers

7.1 DMA Controller 8257 294
7.2 DMA Transfers and Operations 300
7.3 Programmable DMA Interface 8237 306
8. Multimicroprocessor Systems

8.1 Interconnection Topologies 393
8.2 Software Aspects of Multimicroprocessor Systems 397
8.3 Numeric Processor 8087 399
8.4 I/O Processor 8089 420
8.5 Bus Arbitration and Control 423
8.6 Tightly Coupled and Loosely Coupled Systems 428
8.7 Design of a PC Based Multimicroprocessor System 430

Summary 442
Exercises 442

9. 80286–80287—A Microprocessor with Memory Management and Protection

9.1 Salient Features of 80286 444
9.2 Internal Architecture of 80286 446
9.3 Signal Descriptions of 80286 451
9.4 Real Addressing Mode 454
9.5 Protected Virtual Address Mode (PVAM) 455
9.6 Privilege 463
9.7 Protection 468
9.8 Special Operations 470
9.9 80286 Bus Interface 473
9.10 Basic Bus Operations 474
9.11 Fetch Cycles of 80286 475
9.12 80286 Minimum System Configuration 476
9.13 Interfacing Memory and I/O Devices with 80286 478
9.14 Priority of Bus Use by 80286 481
9.15 Bus Hold and HLDA Sequence 484
9.16 Interrupt Acknowledge Sequence 485
9.17 Instruction Set Features 486
9.18 80287 Math Coprocessor 492

Summary 503
Exercises 503

10. 80386–80387 and 80486 the 32-Bit Processors

10.1 Salient Features of 80386DX 506
10.2 Architecture and Signal Descriptions of 80386 506
10.3 Register Organization of 80386 510
10.4 Addressing Modes 512
10.5 Data Types of 80386 514
10.6 Real Address Mode of 80386 514
10.7 Protected Mode of 80386 515
10.8 Segmentation 516
10.9 Paging 518
10.10 Virtual 8086 Mode 520
10.11 Enhanced Instruction Set of 80386 523
10.12 The Coprocessor 80387 524
10.13 The CPU with a Numeric Coprocessor—80486DX 528
 Summary 539
 Exercises 540

11. Recent Advances in Microprocessor Architectures—A Journey from Pentium Onwards 542

11.1 Salient Features of 80586 (Pentium) 543
11.2 A Few Relevant Concepts of Computer Architecture 544
11.3 System Architecture 544
11.4 Branch Prediction 548
11.5 Enhanced Instruction Set of Pentium 548
11.6 What is MMX? 549
11.7 Intel MMX Architecture 549
11.8 MMX Data Types 550
11.9 Wraparound and Saturation Arithmetic 550
11.10 MMX Instruction Set 550
11.11 Salient Points About Multimedia Application Programming 552
11.12 Journey to Pentium-Pro and Pentium-II 552
11.13 Pentium III (P-III)—The CPU of the Next Millennium 554
 Summary 554
 Exercises 555

2. Pentium 4—Processor of the New Millennium 556

12.1 Genesis of Birth of Pentium 4 556
12.2 Salient Features of Pentium 4 557
12.3 Netburst Microarchitecture for Pentium 4 558
12.4 Instruction Translation Lookaside Buffer (ITLB) and Branch Prediction 562
12.5 Why Out of Order Execution 562
12.6 Rapid Execution Module 564
12.7 Memory Subsystem 564
12.8 Hyperthreading Technology 565
12.9 Hyperthreading in Pentium 566
Contents

12.10 Extended Instruction Set in Advanced Pentium Processors 568
12.11 Instruction Set Summary 573
12.12 Need for Formal Verification 584
 Summary 584
 Exercises 584

13. **RISC Architecture — An Overview**
 13.1 A Short History of RISC Processors 586
 13.2 Hybrid Architecture—RISC and CISC Convergence 586
 13.3 The Advantages of RISC 587
 13.4 Basic Features of RISC Processors 587
 13.5 Design Issues of RISC Processors 588
 13.6 Performance Issues in Pipelined Systems 589
 13.7 Architecture of Some RISC Processors 591
 13.8 Architecture of Some RISC Processors 596
 Summary 596
 Exercises 596

14. **Microprocessor Based Aluminium Smelter Control**
 14.1 General Process Description of an Aluminium Smelter 598
 14.2 Normal Control of Electrolysis Cell 599
 14.3 Cell Abnormalities in an Aluminium Smelter 600
 14.4 Brief Description of the Control Laws for Abnormal Cells 601
 14.5 Salient Issues in Design 602
 14.6 Smelter Controller Hardware 602
 14.7 Control Algorithm 603
 Summary 607

15. **Design of a Microprocessor Based Pattern Scanner System**
 15.1 Organization of the Scanner System 609
 15.2 Description of the Scanning System 611
 15.3 Programmed Mode of Operation 613
 15.4 Memory Read/Write System and Start-up Procedures 615
 15.5 Result and Discussion 616
 Summary 618

16. **Design of an Electronic Weighing Bridge**
 16.1 Design Issues 620
 16.2 Software Development 635
 16.3 Calibration 645
 Summary 646
17. An Introduction to Microcontrollers 8051 and 80196

17.1 Intel's Family of 8-bit Microcontrollers 649
17.2 Architecture of 8051 649
17.3 Signal Descriptions of 8051 652
17.4 Register Set of 8051 654
17.5 Important Operational Features of 8051 655
17.6 Memory and I/O Addressing by 8051 658
17.7 Interrupts of 8051 661
17.8 Instruction Set of 8051 662
17.9 Design of a Microcontroller 8051 Based Length Measurement System for Continuously Rolling Cloth or Paper 665
17.10 Intel's 16-bit Microcontroller Family MCS-96 668

Summary 678
Exercises 679
Appendix A 681
Appendix B 691
Appendix C 707
Index 717