DIGITAL CONTROL
A State-Space Approach

Richard J. Vaccaro
Department of Electrical Engineering
University of Rhode Island

McGraw-Hill, Inc.
New York St. Louis San Francisco Auckland Bogotá Caracas Lisbon
London Madrid Mexico City Milan Montreal New Delhi
San Juan Singapore Sydney Tokyo Toronto
CONTENTS

Preface xiii

1 Introduction 1
 1.1 A Motivating Example 1
 1.2 Classical Control Theory 4
 1.2.1 Classical Design Tools 4
 1.2.2 A Word on Terminology 4
 1.3 State-Space Control Theory 7
 1.3.1 State-Space Design Tools 7
 1.4 Digital Control Theory 9
 1.4.1 Digital Control Design Tools 9
 1.4.2 Methods of Digital Control Design 9
 1.4.3 Sampling and Reconstructing an Analog Signal 10
 1.5 Example 12
 1.6 Chapter Summary 13

2 Linear Algebra and Matrix Theory 15
 2.1 Introduction 15
 2.2 The Vector Space \(\mathbb{R}^n \) 16
 2.3 Linear Independence, Bases, and Subspaces 17
 2.4 Matrices 24
 2.4.1 Operations with Matrices 26
 2.4.2 Operations with Partitioned Matrices* 31
 2.4.3 Determinants and Matrix Inverses 35
 2.4.4 The Gram Matrix Test for Linear Independence 36
 2.5 Matrix Subspaces and Projections 38
 2.5.1 Orthogonality 39
 2.5.2 Orthogonal Projections 41
 2.5.3 Orthogonal Complements and the Four Fundamental Subspaces 44
 2.5.4 The Rank of a Matrix 46
2.6 Eigenvalues and Eigenvectors 47
2.7 The Singular Value Decomposition 51
2.8 Linear Equations 54
2.8.1 Characterization by Rank 54
2.8.2 Characterization by Matrix Dimension 55
2.8.3 Least-Squares and Min-Norm Solutions—Full Rank Case 56
2.8.4 Using SVD to Solve Linear Equations 59
2.9 Chapter Summary 62
2.10 Problems 62

3 State-Space and Transfer Function Models 68
3.1 Transforms and Transfer Functions 68
3.1.1 Continuous-Time Systems 68
3.1.2 Discrete-Time Systems 72
3.2 Relationship Between Continuous and Discrete Step Responses 75
3.3 State-Space Models 79
3.3.1 A Continuous-Time Canonical Form 84
3.3.2 A Discrete-Time Canonical Form 88
3.3.3 Other Canonical Forms 91
3.3.4 Linear Transformations and Transfer Functions 96
3.3.5 Initial Conditions for Continuous-Time Systems* 104
3.3.6 Initial Conditions for Discrete-Time Systems* 106
3.4 Solving the State Equations 108
3.4.1 Solving Discrete-Time State Equations 108
3.4.2 Solving Continuous-Time State Equations 110
3.5 Interconnected Systems 114
3.6 Models of Example Systems 117
3.6.1 A Single-Time-Constant System 117
3.6.2 Double Integrator 118
3.6.3 Type-I Servo System 119
3.6.4 Harmonic Oscillator 119
3.6.5 Single-Time-Constant Systems with Time Delay 120
3.6.6 A Pendulum-on-a-Cart System 121
3.7 Chapter Summary 125
3.8 Appendix: Linearization of Nonlinear Systems 125
3.9 Problems 129

4 Discrete-Time Models of Analog Plants 131
4.1 ZOH Equivalent Models for Analog Systems 131
4.1.1 Model Development 131
4.1.2 The ZOH Equivalent as a Design Model 134
4.2 Matrix Functions 138
4.2.1 Matrix Functions via Cayley-Hamilton 138
4.2.2 Matrix Functions via Eigenvalue Decomposition 141
4.3 Discretizing a System with Time Delay* 148
4.4 The ZOH Pole-Mapping Formula 148
4.5 Calculating Intersample Response 152
4.6 Chapter Summary 155
4.7 Problems 159
5 Frequency Domain Analysis

- **5.1 Sinusoidal Response of Linear Systems**
 - 5.1.1 Continuous-Time Systems
 - 5.1.2 Discrete Time
- **5.2 Stability Margins and Nyquist Plots**
- **5.3 Gain and Phase Margins**
 - 5.3.1 Gain Margin
 - 5.3.2 Phase Margin
- **5.4 Scaling a Transfer Function**
- **5.5 Steady-State Error and System Type**
- **5.6 Chapter Summary**
- **5.7 Problems**

6 Designing State-Feedback Regulators

- **6.1 Controllability**
- **6.2 Transforming a Controllable System to Controllable Canonical Form**
- **6.3 Pole Placement by Digital State Feedback**
 - 6.3.1 The Regulation Problem in Controllable Canonical Form
 - 6.3.2 Pole Placement for an Arbitrary Controllable System
 - 6.3.3 Regulator Stability Margins
 - 6.3.4 Simulating a Digital Regulator
- **6.4 Choosing Closed-Loop Pole Locations**
 - 6.4.1 Specifying Dominant Poles
 - 6.4.2 Deadbeat Control
 - 6.4.3 Prototype Systems
 - 6.4.4 Satisfying Constraints
 - 6.4.5 Choosing the Sampling Interval
- **6.5 Adding a Reference Input**
- **6.6 Relationship Between State Feedback and PID Control**
- **6.7 Chapter Summary**
- **6.8 Problems**

7 Observers

- **7.1 Introduction**
- **7.2 Full-Order Observers**
 - 7.2.1 Open-Loop Observers
 - 7.2.2 Closed-Loop Observers
- **7.3 Using Observers for Regulation**
 - 7.3.1 Stability Margins for Observer-Based Regulators
 - 7.3.2 How to Choose Observer Poles
- **7.4 Reduced-Order Observers**
 - 7.4.1 Analysis and Design of a Reduced-Order Observer
 - 7.4.2 Case 1: \(m \geq n/2 \), rank \((\Phi_{12}) = n - m\)
 - 7.4.3 Case 2: \(m = 1 \)
 - 7.4.4 Case 3: General Case
- **7.5 Reduced-Order Observers for Regulation**
- **7.6 Reduced-Order Observers for Systems with an Arbitrary Output Matrix**
 - 7.6.1 Measure \(m \) State Variables
 - 7.6.2 General Case
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Summary</td>
<td>7.7, 7.8</td>
</tr>
<tr>
<td>8</td>
<td>Tracking Systems</td>
<td>8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7</td>
</tr>
<tr>
<td>10</td>
<td>Optimal Control</td>
<td>10.1, 10.2, 10.3, 10.4</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td></td>
</tr>
</tbody>
</table>